优游国际门户网站
www.txsjclub.com

圈量子引力理论预言的空间像原子一样

近几十年来,物理学家和数学家一直在思考,空间是否由离散的块组成的。假如我们能在足够小的尺度上进行探测,那么会看到空间的“原子”吗?这里的“原子”即指空间存在无法被进一步分解的单元。同样,对于时间:自然是连续变化的吗?或者说世界是否像计算机那样,通过一系列极小的步骤运转?

过去的几十年见证了科学家在这些问题上的巨大进步。一个拥有圈量子引力这样奇怪名字的理论预言了空间和时间的确是由离散的块组成。在该理论框架下,科学家的计算揭示出一幅简单漂亮的图像。这一理论也加深了我们对与黑洞、宇宙大爆炸相关的那些令人困惑的现象的理解。最重要的是,当前的实验很可能会在不远的将来探测到来自时空原子结构的信号——当然,前提是这些结构真的存在。

量子和引力理论

量子力学理论在20世纪的前25年被论证,这一发展过程与确认物质由原子组成紧密相关。量子力学方程所需要的某些量,如原子的能量,只能来自于特定的离散单元。量子理论成功预言了原子的属性和行为,以及组成它们的基本粒子和力。

在量子理论得到论证的同时,爱因斯坦构建了关于引力的理论——广义相对论。在他的理论中,引力作为时间和空间(一起构成“时空)因物质的存在而被弯曲的结果出现。任何物质块或能量的集中都会扭曲时空的几何结构,引起其他粒子或光线向集中的物质或能量偏转,这种现象我们称为引力。

量子理论和爱因斯坦的广义相对论已经分别被实验完美证实,但实验尚没有探索到这两者都起重要作用的情形。问题就在于,量子效应在小尺度上是非常显著的,而广义相对论的影响需要巨大的质量才能显现出来,所以要合并这两种条件需要特别的环境。

和实验数据的缺口相伴的,还有一个重大的概念问题:爱因斯坦的广义相对论完全是古典式的理论,而非量子的理论。物理学作为一个整体必然是逻辑自洽的,所以肯定存在能以某种方式统一量子力学和广义相对论的理论。科学家所追求的这种理论可称为量子引力理论。由于广义相对论处理的是时空的几何结构,引力的量子理论也即是时空的量子理论。

物理学家已经发展出相当多可以把经典理论转变为量子理论的数学程序。众多理论物理学家和数学家致力于将那些标准方法应用在广义相对论上,但早期的研究结果是令人沮丧的。科学家尝试了许多不同的方法,如扭量理论(twistor theory)、超引力(supergravity)和弦论(string theory)。然而,在多年的研究后,所有这些理论做出的预言仍无法被实验所证实。因此,许多物理学家开始重新考虑量子理论和广义相对论最终是否真的可以相容。

一个巨大的漏洞

20世纪80年代中期,我们几个人,包括阿贝·阿西提卡(Abhay Ashtekar)、泰德·贾寇柏森(Ted Jacobson)和卡洛·洛华利(Carlo Rovelli)决定,重新检查量子力学和广义相对论是否能用标准方法联系在一起。我们知道,20世纪70年代的糟糕结果有一个重大漏洞。无论我们如何仔细检查,都会发现那些计算假定的几何空间是连续和平滑的,正如原子发现之前人们所想象的物质一样。如果这种假设是错误的,那么以前的计算方式也是不可靠的。

所以,我们开始寻找一种没有假设空间连续和平滑的计算方式。我们对自己的假设做了限定,即不在广义相对论和量子理论已被实验验证的原理之外做假设。尤其是,在我们的计算核心中保留了两个关键的广义相对论原理。

第一个原理叫做背景独立(background independence)。这一原理表示,时空的几何结构不是固定的,而是一个不断发展的动态量。为了找到这样的几何结构,必须对某些包含了物质和能量的所有影响的方程求解。

第二个原理则拥有令人印象深刻的名字——微分同胚不变性(diffeomorphism invariance),这一原理意味着,不像之前的广义相对论,我们可以自由选择任何坐标系去映射时空、表达方程。对时空中的一个点进行定义时,只根据这个点上发生的物理过程来定义,而非根据由一些特殊坐标系所得到的位置 (没有特殊的坐标系)。微分同胚不变性在广义相对论中极其重要。

利用量子力学的标准方法,小心合并这两个原理,我们开发出了一套能够通过计算来确定空间是连续还是离散的数学语言。我们高兴地看到,计算所显示的空间是量子化的。我们至此已经奠定了圈量子引力理论的基础。这里顺便说一下,在理论计算中会涉及时空中的一些小圈, “圈量子引力”由此得名。

圈量子引力理论的一个核心预言与体积和面积有关。比如一个球壳,定义其边界为B,这一空间区域有体积(a)。根据经典(非量子的)物理,该体积可以是任何正式数。圈量子引力理论认为,存在非零的绝对最小体积(约为普朗克长度的立方,或10-99立方厘米),并且预言更大区域的体积只能取一系列离散的数。相似的,根据圈量子引力理论,存在非零的最小面积(约为普朗克长度的平方,或10-66立方厘米),更大的面积也只能取一系列离散的数。量子面积和体积的离散值(b)与氢原子的量子能级大致相似(c)。

圈量子引力理论预言的空间像原子一样:在体积测量实验中可以得到一组离散的数据,即体积也是可区分的块。另一个我们可以测得的量是区域B的表面积,理论计算再次返回一个明确的结果:表面积也是离散量。换句话说,空间是不连续的,只存在特定量子单位的面积和体积。

区域B的体积和面积的可能值所拥有的单位叫做普朗克长度。这个单位与引力的强度、量子的尺寸以及光速的大小有关,它所衡量的空间几何结构在尺度上不再是连续的。普朗克长度很小:10-33厘米。因此,圈量子引力理论预言在每立方厘米空间中大约有1099个“体积原子”。这样,每立方厘米所拥有的体积量子数,甚至超过可见宇宙中立方厘米空间的数量(1085)。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。